Epigenetics
Epigenetics

Lyle Armstrong
ONLINE RESOURCES

Accessible from www.garlandscience.com, the Student and Instructor Resource Websites provide learning and teaching tools created for Epigenetics. The Student Resource Site is open to everyone, and users have the option to register in order to use book-marking and note-taking tools. The Instructor Resource Site requires registration and access is available only to qualified instructors. To access the Instructor Resource Site, please contact your local sales representative or email science@garland.com. Below is an overview of the resources available for this book. On the Website, the resources may be browsed by individual chapters and there is a search engine. You can also access the resources available for other Garland Science titles.

For students

Flashcards
Each chapter contains a set of flashcards that allow students to review key terms from the text.

Glossary
The complete glossary from the book can be searched and browsed as a whole or sorted by chapter.

For instructors

Figures
The images from the book are available in two convenient formats: PowerPoint® and JPEG. They have been optimized for display on a computer.

PowerPoint is a registered trademark of Microsoft Corporation in the United States and/or other countries.
Contents

CHAPTER 1 INTRODUCTION TO THE STUDY OF EPIGENETICS

1.1 THE CORE ISSUE: CONTROLLING THE EXPRESSION OF SPECIFIC GENES 1
1.2 DEFINING EPIGENETICS .. 1
1.3 THE NATURE OF EPIGENETIC MARKS ... 2
1.4 THE IMPORTANCE OF EPIGENETICS ... 2

FURTHER READING ... 4

CHAPTER 2 THE BASIS OF THE TRANSCRIPTION PROCESS

2.1 THE NEED FOR SPECIFICITY .. 7
2.2 PROMOTERS AND THEIR TATA BOXES .. 8
2.3 ASSEMBLY OF THE PRE-INITIATION COMPLEX .. 10
2.4 INITIATION OF TRANSCRIPTION .. 11

KEY CONCEPTS .. 12

FURTHER READING ... 12

CHAPTER 3 DNA PACKAGING AND CHROMATIN ARCHITECTURE

3.1 NUCLEOSOME STRUCTURE AND CHROMATIN ... 15
 Chromatin consists of DNA plus many proteins .. 15
 The nucleosome is the basic unit of chromatin ... 16
 DNA binds to the histone octamer ... 17

3.2 CHROMATIN ARCHITECTURE .. 21
 Chains of nucleosomes organize into chromatin fibers ... 21
 Chromatin fibers are further organized into euchromatin and heterochromatin 23
 A variety of mechanisms are involved in compacting chromatin beyond the 30 nm fiber stage ... 24
 Chromatin compaction restricts access to the information content of DNA 26

KEY CONCEPTS .. 26

FURTHER READING ... 27

CHAPTER 4 MODIFYING THE STRUCTURE OF CHROMATIN

4.1 CHROMATIN REMODELING ... 29
 Chromatin remodeling transiently exposes DNA to binding proteins 29
 Chromatin remodeling is mediated by the SWI/SNF family of proteins in eukaryotes ... 30
 Chromatin remodeling by SWI/SNF works by repositioning nucleosomes 31
 Transcription factor binding sites are often located in regions of low nucleosome occupancy ... 32

4.2 CHROMATIN MODIFICATION ... 33
 Spontaneous conformational changes and covalent modifications can also expose DNA to transcription factors ... 33
 Epigenetic modification of DNA or histones regulates nucleosome occupancy and repositioning ... 35

KEY CONCEPTS .. 37

FURTHER READING ... 37
CHAPTER 5 DNA METHYLATION

5.1 PATTERNS OF DNA METHYLATION
CpG-rich islands are infrequently methylated 40
CpG-poor islands are frequently methylated 40

5.2 EFFECTS OF DNA METHYLATION ON TRANSCRIPTION
Proteins controlling cellular function interact with methylated DNA 42
Transcription factors and methylated-DNA-binding proteins can repress transcription 44

5.3 THE MOLECULES THAT METHYLATE DNA
De novo methylation of cytosine establishes the methylation pattern 45
Existing patterns of DNA methylation are maintained 47

5.4 DNA METHYLTRANSFERASE ACTIVITY
Enzyme activity can be controlled by small molecules in vivo 48
DNA methyltransferase activity can be controlled transcriptionally 49

5.5 METHYLATION REGULATION AT SPECIFIC GENE LOCI
Histone interaction with DNA methyltransferases affects where DNA is methylated 51
Transcription factors may control DNA methyltransferases 52
Noncoding RNA may control DNA methyltransferases 53
Noncoding RNA can influence chromatin regulation directly 55

5.6 GENOME FUNCTION CONTROL ACROSS SPECIES 56

KEY CONCEPTS 57
FURTHER READING 57

CHAPTER 6 POST-TRANSLATIONAL MODIFICATION OF HISTONES

6.1 ACETYLATION AND METHYLATION OF LYSINE 60
Lysine is often acetylated in histone tails 61
Proteins with bromodomains recognize and bind to acetylated histones 62
The multiple methylation states of lysine can alter transcriptional response 63

6.2 PHOSPHORYLATION OF SERINE AND THREONINE 65
6.3 ADDITION OF UBQUITIN TO SPECIFIC LYSINES 66
6.4 SUMOYLATION OF LYSINES 68
6.5 BIOTINYLATION OF HISTONES 69
6.6 ADP-RIBOSYLATION OF HISTONES 71
6.7 THE HISTONE CODE HYPOTHESIS 71

KEY CONCEPTS 73
FURTHER READING 73

CHAPTER 7 HISTONE MODIFICATION MACHINERY

7.1 ENZYMES THAT ACETYLATE OR DEACETYLATE HISTONES 77
Acetyl groups are added by a class of enzymes known as histone acetyltransferases 77
Histone acetyltransferases add acetyl groups to specific lysine residues 77
Histone deacetylase enzymes remove acetyl groups from histone lysine residues 80

7.2 ENZYMES THAT METHYLATE OR DEMETHYLATE HISTONES 80
The histone methyltransferases add methyl groups to histone residues 80
The SET domain 83
SET 7/9 83
EZH2 85
Human SET domain proteins 85
MLL-family proteins 86
Non-SET-dependent methyltransferases 87
The histone arginyl methyltransferases 87
Histone methylation is reversible using histone demethylases 90
Lysine-specific demethylase 1 90
Demethylating trimethylated lysine 4 on H3 93
Demethylating methylated arginine 93
7.3 ENZYMES THAT PHOSPHORYLATE OR DEPHOSPHORYLATE HISTONES
Kinases catalyze the phosphorylation of specific amino acids on histones
A variety of serine kinases phosphorylate serine 10 on histone H3
Ribosomal S6 kinases
MSK1 and MSK2
Aurora kinases
MST1 kinase phosphorylates Ser 14 on histone H2B
Histone phosphatases remove phosphates from histone residues

7.4 ENZYMES THAT ADD AND REMOVE UBQUITIN ON HISTONES
E3 ubiquitin ligases add ubiquitin to lysine
A variety of enzymes remove ubiquitin from lysine

7.5 ENZYMES THAT ADD AND REMOVE THE SUMO GROUP ON HISTONES
E3 SUMO ligases add the SUMO group to lysine
SUMO-specific proteases remove the SUMO group from lysine

7.6 ENZYMES THAT ADD AND REMOVE BIOTIN ON HISTONES
Biotinidase and biotin holocarboxylase synthetase can biotinylate histones
Enzymes that remove biotin from histone lysine residues

CHAPTER 8 LOCUS-SPECIFIC CONTROL OF HISTONE-MODIFYING ENZYME ACTION
8.1 HISTONE ACETYLATION AND DEACETYLATION AS A PROTEIN COMPLEX ACTIVITY
NURD is a well-known deacetylation complex
SIN3A acts as a scaffold on which repressor proteins may assemble
Protein complexes containing histone acetyltransferases promote transcription

8.2 COMPLEXES OF THE HISTONE METHYLTRANSFERASES

8.3 KINASE COMPLEXES FOR HISTONE PHOSPHORYLATION

8.4 COORDINATION AMONG CHROMATIN-MODIFYING COMPLEXES
HDAC complexes respond to other histone modifications
Noncoding RNA can regulate histone-modifying complexes
Polycomb and trithorax are examples of chromatin activator and repressor complexes controlled by noncoding RNA

KEY CONCEPTS
FURTHER READING

CHAPTER 9 EPIGENETIC CONTROL OF CELL-SPECIFIC GENE EXPRESSION
9.1 EPIGENETIC CONTROL OF CHROMOSOME ARCHITECTURE
The position of DNA within separate subnuclear compartments reflects the expression or repression of genes
The nuclear skeleton is central to subnuclear organization

9.2 SPATIAL ORGANIZATION OF GENE TRANSCRIPTION IN THE NUCLEUS
The nucleolus is formed from multiple chromatin loops
rRNA genes are clustered for transcription in the nucleus
rRNA gene structure
Regulation of rRNA gene transcription
Proteins that protect or target rDNA for methylation and demethylation
Genes transcribed by RNA polymerase II show a different organization
Transcription factories may be semi-permanent structures

9.3 THE EPIGENETIC CONTRIBUTION TO TRANSCRIPTION FACTORY ORGANIZATION
The β-globin locus control region is subject to epigenetic control
The HOX clusters are also subject to epigenetic control of gene expression. RAREs occur in open-chromatin regions. HOX gene expression levels.

KEY CONCEPTS
147

FURTHER READING
147

CHAPTER 10 EPIGENETIC CONTROL OF THE MITOTIC CELL CYCLE

10.1 S PHASE INVOLVES DNA REPLICATION 149

10.2 THE CELL DIVIDES IN M PHASE 153

KEY CONCEPTS 154

FURTHER READING 155

CHAPTER 11 THE EPIGENETIC BASIS OF GENE IMPRINTING

11.1 CONTROLLING MONOAALLEIC EXPRESSION OF IMPRINTED GENES 157
Imprinted genes share few characteristics in common 157
Imprinting control regions (ICRs) regulate the imprinted expression of genes 158
Differentially methylated regions contain imprinting signals 159
Chromatin modifications at DMR sites affect gene imprinting 159

11.2 EXAMPLES OF IMPRINTING 160
The imprinting of IGF2/H19 is well documented 160
Binding of CTCF at the IGF2/H19 imprint control region to an insulator mechanism to control imprinted gene expression 161
The mechanism by which insulation occurs is uncertain 162
There are other examples of imprinting on the same stretch of DNA 163

11.3 ESTABLISHING DIFFERENTIALLY METHYLATED REGIONS 164
Most genes undergo demethylation after fertilization 164
Imprinted genes retain their DNA methylation patterns at their DMRs during fertilization 165

11.4 THE NEED FOR IMPRINTING 168

KEY CONCEPTS 169

FURTHER READING 169

CHAPTER 12 EPIGENETIC CONTROL OF CELLULAR DIFFERENTIATION

12.1 FROM CELLULAR TOTIPOTENCY TO PLURIPOTENCY 171

12.2 MAINTENANCE OF PLURIPOTENCY IN EMBRYONIC STEM CELLS 173

12.3 DIFFERENTIATION OF EMBRYONIC STEM CELLS 174

12.4 BIVALENT CHROMATIN DOMAINS IN NEURAL STEM CELLS 176

12.5 CHROMATIN PROFILE OF HEMATOPOIETIC PROGENITORS 177

KEY CONCEPTS 178

FURTHER READING 179

CHAPTER 13 REVERSIBILITY OF EPIGENETIC MODIFICATION PATTERNS

13.1 REPROGRAMMING THE EPIGENOME BY SOMATIC CELL NUCLEAR TRANSFER 182
What happens to the somatic genome during SCNT? 183
Epigenetic modification is the basis of SCNT reprogramming 185
Epigenetic reprogramming is a normal feature of fertilization that is hijacked by SCNT 186
There are several possible mechanisms by which the somatic genome might be remodeled in SCNT 187
The epigenetic remodeling that occurs in SCNT differs from the remodeling that occurs after fertilization 189
Some aspects of reprogramming of the somatic epigenome are outside the oocyte’s capacity 190
Somatic gene expression must be turned off for epigenetic reprogramming to occur in SCNT embryos 191

13.2 REPROGRAMMING THE EPIGENOME BY CELL FUSION 192
Fusion of somatic cells with pluripotent cells can reprogram the somatic genome 192
OCT4 is involved in genome reprogramming in heterokaryons 194
There are several possible mechanisms by which the OCT4/SOX2/NANOG trinity of pluripotency factors may work to reprogram genomes 195
Reprogramming may not be the sole purview of ESCs 196

13.3 REPROGRAMMING THE EPIGENOME BY CELL EXTRACTS 197
Cell extracts can effect epigenetic reprogramming by providing the needed regulatory factors 197
Cell extract reprogramming has the potential to be clinically useful 198

13.4 REPROGRAMMING THE EPIGENOME BY INDUCED PLURIPOTENCY 199
Epigenetic reprogramming occurs during iPSC derivation 201
Making iPSCs safe for clinical application 203

KEY CONCEPTS 204

FURTHER READING 205

CHAPTER 14 EPIGENETIC PREDISPOSITION TO DISEASE AND IMPRINTING-BASED DISORDERS 208

14.1 PREDISPOSITION TO DISEASE 208
Life-course epidemiology seeks to explain disease 208
Epigenetics may be the basis of stochastic variation in disease 210

14.2 IMPRINTING-BASED DISORDERS 210
Imprinting disorders can persist beyond embryogenesis 211
Prader–Willi and Angelman syndromes result from disruptions on chromosome 15 212
Beckwith–Wiedemann and Silver–Russell syndromes are consequences of disruptions of the IGF-H19 locus 216
Assisted reproductive technologies may increase the incidence of imprinting diseases 218

14.3 EPIGENETICS OF MAJOR DISEASE GROUPS 219
Cardiovascular disease is the major killer in high-income countries 219
The basic problem in cardiovascular disease is atherosclerosis 220
Epigenetic events may promote atherosclerosis by increasing known risk factors 221
Epigenetics has a role in the regulation of arterial hypertension 224
Hypertension increases with age 224
Cardiac hypertrophy and heart failure also have an epigenetic component 227
Epigenetic drift may contribute to cardiovascular disease 228

14.4 EPIGENETICS OF KIDNEY DISEASE 229

14.5 EPIGENETICS OF DIABETES 231

KEY CONCEPTS 233

FURTHER READING 234

CHAPTER 15 EPIGENETICS OF MEMORY, NEURODEGENERATION, AND MENTAL HEALTH 235

15.1 MEMORY 235
Memory formation relies on specific regions of the brain 235
Structural changes and plasticity of synapses could be the basis of long-term memory 237
Epigenetic control of synaptic plasticity may contribute to memory maintenance 237

15.2 EPIGENETIC INVOLVEMENT IN NEURODEGENERATION 240
Epigenetic alterations may contribute to the development of Alzheimer’s disease 240
There is some evidence that epigenetic mechanisms may contribute to Parkinson’s disease 243

15.3 THE IMPACT OF EPIGENETIC CONTROL OF GENE EXPRESSION ON MENTAL HEALTH 244
Disruption of epigenetic regulation may explain some features of bipolar disorder 245
Epigenetic regulation is a factor in major depressive disorder 247

15.4 SUMMARY 251

KEY CONCEPTS 251

FURTHER READING 252

CHAPTER 16 EPIGENETICS OF CANCER

16.1 UNCONTROLLED CELL REPLICATION 254
Loss of control of tissue homeostasis is a root cause of cancer 254
Tissue homeostasis requires cell death 256
Loss of control of cell division is also known as cell transformation 256
Dysfunctional genes are the basis of transformation 257

16.2 CHANGES LEADING TO NEOPLASTIC TRANSFORMATION 258
Oncogenes and tumor suppressor genes are often altered during cancer progression 258
Genomic instability is a common trait of cancer cells 260
Cancer cells frequently show major disruption in their DNA methylation profiles 261
Impairment of DNA-repair mechanisms enhances cancer progression 262

16.3 ABNORMAL PATTERNS OF DNA METHYLATION IN CANCER 263
DNA hypermethylation is typically mediated by DNMT1 263
The mechanisms controlling DNA methylation are imperfect 264
Abnormal DNA hypomethylation contributes to cancer formation and progression 267
Oxidative stress has additional effects on epigenetic processes that impinge on cancer 270
The influence of microRNA on DNA methylation in cancer 271

16.4 HISTONE MODIFICATION PATTERNS AND CANCER 273
How does histone acetylation contribute to tumorigenesis? 273
The HAT/HDAC balance requires dysregulation of other factors 274
Histone methylation contributes to tumorigenesis 275

16.5 EXAMPLES OF EPIGENETIC DYSREGULATION LEADING TO CANCER 276
Hematological malignancies such as leukemia are good examples of epigenetic dysregulation 276
DNA hypermethylation and hypomethylation contribute to the leukemic phenotype 278
How epigenetics contributes to lung cancers 281

KEY CONCEPTS 284

FURTHER READING 285

GLOSSARY 287

INDEX 291
SECTION 1

BASIC CONCEPTS

CHAPTER 1 Introduction to the Study of Epigenetics
CHAPTER 2 The Basis of the Transcription Process
CHAPTER 3 DNA Packaging and Chromatin Architecture
CHAPTER 4 Modifying the Structure of Chromatin
CHAPTER 5 DNA Methylation
CHAPTER 6 Post-Translational Modification of Histones
CHAPTER 7 Histone Modification Machinery
CHAPTER 8 Locus-Specific Control of Histone-Modifying Enzyme Action