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PREFACE

This book is a completely revised edition of Human Evolutionary Genetics, 
fi rst published in 2004. We decided to write the fi rst edition because there 

were no textbooks available covering the areas that interested us. Once we had 
embarked upon the Herculean task of producing it, we realized why nobody had 
attempted to summarize this forbiddingly broad and contentious fi eld before. 
But luckily the reception was positive, one eager person (our ideal reader and 
not, we point out, one of the authors in disguise) writing on Amazon that “I 
bought a copy for myself, and another one for my advisor. I have read it twice in 
a week!” A revised version seemed like a pretty good idea.

We cheerfully imagined that the second edition would be easier to write than the 
fi rst. How wrong we were. First, all three original authors (MJ, MH, and CTS) had 
accumulated additional responsibilities that reduced the available time for writ-
ing. Second, the fi eld obstinately continued to grow, and scarcely a week went 
by without some interesting and important development—the genomes of new 
species, genomewide surveys of human variation, next-generation sequencing 
and its data tsunami, spectacular ancient DNA discoveries, large-scale popu-
lation studies, novel statistical methods, archaeological and paleontological 
revelations—the list goes on. We sometimes wished everyone would just stop 
working for a bit, so we could catch up. So, our deadline for the second edition 
passed, was revised, and passed again. HEG1 was becoming more and more out 
of date. We needed help.

The cavalry duly arrived in the form of two sterling new recruits to the autho-
rial team—EH and TK. They brought their own areas of interest and expertise, 
but also a more effi cient and energetic approach to the writing process, which 
revitalized the whole project. So, after a lengthy and diffi cult gestation, here is 
HEG2.

Following an initial introductory chapter, the book is divided into fi ve sections, 
allowing it to be read by interested students and researchers from a broad range 
of backgrounds. “How do we study genome diversity?” (Chapters 2–4) and “How 
do we interpret genetic variation?” (Chapters 5–6) together provide the neces-
sary tools to understand the rest of the book. The fi rst of these sections surveys 
the structure of the genome, different sources of genomic variation, and the 
methods for assaying diversity experimentally. The second introduces the evolu-
tionary concepts and analytical tools that are used to interpret this diversity. The 
subsequent two sections take an approximately chronological course through 
the aspects of our current state of knowledge about human origins that we con-
sider most important. The section “Where and when did humans originate?” 
(Chapters 7–9) fi rst considers our links to our closest living nonhuman relatives, 
the other great apes, then investigates the genetic changes that have made us 
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human, and fi nally details the more recent African origin of our own species. 
“How did humans colonize the world?” (Chapters 10–14) describes how human 
genetic diversity is currently distributed globally and then discusses the evi-
dence for early human movements out of Africa, and the subsequent processes 
of expansion, migration, and mixing that have shaped patterns of diversity in 
our genomes. Finally, “How is an evolutionary perspective useful?” (Chapters 
15–18) demonstrates the wider applications of an evolutionary approach for 
our understanding of phenotypic variation, the genetics of diseases both simple 
and complex, and the identifi cation of individuals. Extensive cross-referencing 
between these sections facilitates different routes through the book for readers 
with divergent interests and varying amounts of background knowledge.

An important feature is the use of “Opinion Boxes”—short contributions by 
guest authors who are experts in different aspects of this diverse subject area. 
These help to give a fl avor of scientifi c enquiry as an ongoing process, rather 
than a linear accumulation of facts, and encourage the reader to regard the 
published literature with a more critical eye. Opinions about how data should 
be interpreted change, and often an objective way to choose between differ-
ent interpretations is not obvious. This is particularly true of genetic data on 
human diversity. Many of the debates represented in the Opinion Boxes scat-
tered through this book derive from methodological differences.

Additional resources have been incorporated to permit interested readers to 
explore topics in greater depth. Each chapter is followed by a detailed bibliog-
raphy, within which the sources that should be turned to fi rst for more detail 
are highlighted in purple text. Electronic references to internet sites are given 
throughout the book, both for additional information and for useful software and 
databases. We explain specialist terms where they are fi rst used, and include an 
extensive glossary at the back of the book that defi nes all terms in the text that 
are in bold type. At the end of each chapter is a list of questions (some short-
answer, and some prose) that allow the reader to test their knowledge as they 
proceed. Teachers may be interested to know that most of the fi gures are freely 
available from the Garland Science Website (www.garlandscience.com) for use 
in teaching materials.

An obvious difference from the fi rst edition is the presence of two extra chapters, 
refl ecting developments in understanding the human genome in the context of 
other hominid genomes, and in complex disease. A very welcome development 
is the availability of full-color printing, which makes complex fi gures much eas-
ier to understand.
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