Detailed Contents

Chapter 1
Elements of the Immune System and their Roles in Defense

1-1 Numerous commensal microorganisms inhabit healthy human bodies 2
1-2 Pathogens are infectious organisms that cause disease 3
1-3 The skin and mucosal surfaces form barriers against infection 4
1-4 The innate immune response causes inflammation at sites of infection 8
1-5 The adaptive immune response adds to an ongoing innate immune response 10
1-6 Adaptive immunity is better understood than innate immunity 12
1-7 Immune system cells with different functions all derive from hematopoietic stem cells 12
1-8 Immunoglobulins and T-cell receptors are the diverse lymphocyte receptors of adaptive immunity 16
1-9 On encountering their specific antigen, B cells and T cells differentiate into effector cells 17
1-10 Antibodies bind to pathogens and cause their inactivation or destruction 18
1-11 Most lymphocytes are present in specialized lymphoid tissues 19
1-12 Adaptive immunity is initiated in secondary lymphoid tissues 20
1-13 The spleen provides adaptive immunity to blood infections 23
1-14 Most secondary lymphoid tissue is associated with the gut 25

Summary to Chapter 1 26
Questions 27

Chapter 2
Innate Immunity: the Immediate Response to Infection

2-1 Physical barriers colonized by commensal microorganisms protect against infection by pathogens 29
2-2 Intracellular and extracellular pathogens require different types of immune response 30
2-3 Complement is a system of plasma proteins that mark pathogens for destruction 31
2-4 At the start of an infection, complement activation proceeds by the alternative pathway 32
2-5 Regulatory proteins determine the extent and site of C3b deposition 34
2-6 Phagocytosis by macrophages provides a first line of cellular defense against invading microorganisms 36
2-7 The terminal complement proteins lyse pathogens by forming membrane pores 37
2-8 Small peptides released during complement activation induce local inflammation 39
2-9 Several classes of plasma protein limit the spread of infection 39
2-10 Antimicrobial peptides kill pathogens by perturbing their membranes 41
2-11 Pentraxins are plasma proteins of innate immunity that bind microorganisms and target them to phagocytes 43

Summary to Chapter 2 43
Questions 44
Chapter 3
Innate Immunity: the Induced Response to Infection

- **3-1** Cellular receptors of innate immunity distinguish ‘non-self’ from ‘self’
- **3-2** Tissue macrophages carry a battery of phagocytic and signaling receptors
- **3-3** Recognition of LPS by TLR4 induces changes in macrophage gene expression
- **3-4** Activation of resident macrophages induces a state of inflammation at sites of infection
- **3-5** NOD-like receptors recognize bacterial degradation products in the cytoplasm
- **3-6** Inflammasomes amplify the innate immune response by increasing the production of IL-1β
- **3-7** Neutrophils are dedicated phagocytes and the first effector cells recruited to sites of infection
- **3-8** Inflammatory cytokines recruit neutrophils from the blood to the infected tissue
- **3-9** Neutrophils are potent killers of pathogens and are themselves programmed to die
- **3-10** Inflammatory cytokines raise body temperature and activate the liver to make the acute-phase response
- **3-11** The lectin pathway of complement activation is initiated by the mannose-binding lectin
- **3-12** C-reactive protein triggers the classical pathway of complement activation
- **3-13** Toll-like receptors sense the presence of the four main groups of pathogenic microorganisms
- **3-14** Genetic variation in Toll-like receptors is associated with resistance and susceptibility to disease
- **3-15** Internal detection of viral infection induces cells to make an interferon response
- **3-16** Plasmacytoid dendritic cells are factories for making large quantities of type I interferons
- **3-17** Natural killer cells are the main circulating lymphocytes that contribute to the innate immune response
- **3-18** Two subpopulations of NK cells are differentially distributed in blood and tissues
- **3-19** NK-cell cytotoxicity is activated at sites of virus infection
- **3-20** NK cells and macrophages activate each other at sites of infection
- **3-21** Interactions between dendritic cells and NK cells influence the immune response

Summary to Chapter 3

Questions

Chapter 4
Antibody Structure and the Generation of B-Cell Diversity

- **4-1** Antibodies are composed of polypeptides with variable and constant regions
- **4-2** Immunoglobulin chains are folded into compact and stable protein domains
- **4-3** An antigen-binding site is formed from the hypervariable regions of a heavy-chain V domain and a light-chain V domain
- **4-4** Antigen-binding sites vary in shape and physical properties
- **4-5** Monoclonal antibodies are produced from a clone of antibody-producing cells
- **4-6** Monoclonal antibodies are used as treatments for a variety of diseases

Generation of immunoglobulin diversity in B cells before encounter with antigen

- **4-8** Random recombination of gene segments produces diversity in the antigen-binding sites of immunoglobulins
- **4-9** Recombination enzymes produce additional diversity in the antigen-binding site
- **4-10** Developing and naive B cells use alternative mRNA splicing to make both IgM and IgD
- **4-11** Each B cell produces immunoglobulin of a single antigen specificity
- **4-12** Immunoglobulin is first made in a membrane-bound form that is present on the B-cell surface

Summary

Diversification of antibodies after B cells encounter antigen

- **4-13** Secreted antibodies are produced by an alternative pattern of heavy-chain RNA processing
- **4-14** Rearranged V-region sequences are further diversified by somatic hypermutation
- **4-15** Isotype switching produces immunoglobulins with different C regions but identical antigen specificities
- **4-16** Antibodies with different C regions have different effector functions
<table>
<thead>
<tr>
<th>Chapter 5</th>
<th>Antigen Recognition by T Lymphocytes</th>
<th>113</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-cell receptor diversity</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>5-1</td>
<td>The T-cell receptor resembles a membrane-associated Fab fragment of immunoglobulin</td>
<td>114</td>
</tr>
<tr>
<td>5-2</td>
<td>T-cell receptor diversity is generated by gene rearrangement</td>
<td>115</td>
</tr>
<tr>
<td>5-3</td>
<td>The RAG genes were key elements in the origin of adaptive immunity</td>
<td>117</td>
</tr>
<tr>
<td>5-4</td>
<td>Expression of the T-cell receptor on the cell surface requires association with additional proteins</td>
<td>117</td>
</tr>
<tr>
<td>5-5</td>
<td>A distinct population of T cells expresses a second class of T-cell receptor with (\gamma) and (\delta) chains</td>
<td>118</td>
</tr>
</tbody>
</table>

| Summary | 119 |

<table>
<thead>
<tr>
<th>Antigen processing and presentation</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-6</td>
<td>T-cell receptors recognize peptide antigens bound to MHC molecules</td>
</tr>
<tr>
<td>5-7</td>
<td>Two classes of MHC molecule present peptide antigens to two types of T cell</td>
</tr>
<tr>
<td>5-8</td>
<td>The two classes of MHC molecule have similar three-dimensional structures</td>
</tr>
<tr>
<td>5-9</td>
<td>MHC molecules bind a variety of peptides</td>
</tr>
<tr>
<td>5-10</td>
<td>MHC class I and MHC class II molecules function in different intracellular compartments</td>
</tr>
<tr>
<td>5-11</td>
<td>Peptides generated in the cytosol are transported to the endoplasmic reticulum for binding to MHC class I molecules</td>
</tr>
<tr>
<td>5-12</td>
<td>MHC class I molecules bind peptides as part of a peptide-loading complex</td>
</tr>
<tr>
<td>5-13</td>
<td>Peptides presented by MHC class II molecules are generated in acidified intracellular vesicles</td>
</tr>
<tr>
<td>5-14</td>
<td>Invariant chain prevents MHC class II molecules from binding peptides in the endoplasmic reticulum</td>
</tr>
<tr>
<td>5-15</td>
<td>Cross-presentation enables extracellular antigens to be presented by MHC class I</td>
</tr>
<tr>
<td>5-16</td>
<td>MHC class I molecules are expressed by most cell types, MHC class II molecules are expressed by few cell types</td>
</tr>
<tr>
<td>5-17</td>
<td>The T-cell receptor specifically recognizes both peptide and MHC molecule</td>
</tr>
</tbody>
</table>

| Summary | 133 |

<table>
<thead>
<tr>
<th>The major histocompatibility complex</th>
<th>135</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-18</td>
<td>The diversity of MHC molecules in the human population is due to multigene families and genetic polymorphism</td>
</tr>
<tr>
<td>5-19</td>
<td>The HLA class I and class II genes occupy different regions of the HLA complex</td>
</tr>
<tr>
<td>5-20</td>
<td>Other proteins involved in antigen processing and presentation are encoded in the HLA class II region</td>
</tr>
<tr>
<td>5-21</td>
<td>MHC polymorphism affects the binding of peptide antigens and their presentation to T cells</td>
</tr>
<tr>
<td>5-22</td>
<td>MHC diversity results from selection by infectious disease</td>
</tr>
<tr>
<td>5-23</td>
<td>MHC polymorphism triggers T-cell reactions that can reject transplanted organs</td>
</tr>
</tbody>
</table>

| Summary | 144 |

<table>
<thead>
<tr>
<th>Antigen processing and presentation</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-6</td>
<td>T-cell receptors recognize peptide antigens bound to MHC molecules</td>
</tr>
<tr>
<td>5-7</td>
<td>Two classes of MHC molecule present peptide antigens to two types of T cell</td>
</tr>
<tr>
<td>5-8</td>
<td>The two classes of MHC molecule have similar three-dimensional structures</td>
</tr>
<tr>
<td>5-9</td>
<td>MHC molecules bind a variety of peptides</td>
</tr>
<tr>
<td>5-10</td>
<td>MHC class I and MHC class II molecules function in different intracellular compartments</td>
</tr>
<tr>
<td>5-11</td>
<td>Peptides generated in the cytosol are transported to the endoplasmic reticulum for binding to MHC class I molecules</td>
</tr>
<tr>
<td>5-12</td>
<td>MHC class I molecules bind peptides as part of a peptide-loading complex</td>
</tr>
<tr>
<td>5-13</td>
<td>Peptides presented by MHC class II molecules are generated in acidified intracellular vesicles</td>
</tr>
<tr>
<td>5-14</td>
<td>Invariant chain prevents MHC class II molecules from binding peptides in the endoplasmic reticulum</td>
</tr>
<tr>
<td>5-15</td>
<td>Cross-presentation enables extracellular antigens to be presented by MHC class I</td>
</tr>
<tr>
<td>5-16</td>
<td>MHC class I molecules are expressed by most cell types, MHC class II molecules are expressed by few cell types</td>
</tr>
<tr>
<td>5-17</td>
<td>The T-cell receptor specifically recognizes both peptide and MHC molecule</td>
</tr>
</tbody>
</table>

| Summary | 133 |

<table>
<thead>
<tr>
<th>The major histocompatibility complex</th>
<th>135</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-18</td>
<td>The diversity of MHC molecules in the human population is due to multigene families and genetic polymorphism</td>
</tr>
<tr>
<td>5-19</td>
<td>The HLA class I and class II genes occupy different regions of the HLA complex</td>
</tr>
<tr>
<td>5-20</td>
<td>Other proteins involved in antigen processing and presentation are encoded in the HLA class II region</td>
</tr>
<tr>
<td>5-21</td>
<td>MHC polymorphism affects the binding of peptide antigens and their presentation to T cells</td>
</tr>
<tr>
<td>5-22</td>
<td>MHC diversity results from selection by infectious disease</td>
</tr>
<tr>
<td>5-23</td>
<td>MHC polymorphism triggers T-cell reactions that can reject transplanted organs</td>
</tr>
</tbody>
</table>

| Summary | 144 |

<table>
<thead>
<tr>
<th>Antigen processing and presentation</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-6</td>
<td>T-cell receptors recognize peptide antigens bound to MHC molecules</td>
</tr>
<tr>
<td>5-7</td>
<td>Two classes of MHC molecule present peptide antigens to two types of T cell</td>
</tr>
<tr>
<td>5-8</td>
<td>The two classes of MHC molecule have similar three-dimensional structures</td>
</tr>
<tr>
<td>5-9</td>
<td>MHC molecules bind a variety of peptides</td>
</tr>
<tr>
<td>5-10</td>
<td>MHC class I and MHC class II molecules function in different intracellular compartments</td>
</tr>
<tr>
<td>5-11</td>
<td>Peptides generated in the cytosol are transported to the endoplasmic reticulum for binding to MHC class I molecules</td>
</tr>
<tr>
<td>5-12</td>
<td>MHC class I molecules bind peptides as part of a peptide-loading complex</td>
</tr>
<tr>
<td>5-13</td>
<td>Peptides presented by MHC class II molecules are generated in acidified intracellular vesicles</td>
</tr>
<tr>
<td>5-14</td>
<td>Invariant chain prevents MHC class II molecules from binding peptides in the endoplasmic reticulum</td>
</tr>
<tr>
<td>5-15</td>
<td>Cross-presentation enables extracellular antigens to be presented by MHC class I</td>
</tr>
<tr>
<td>5-16</td>
<td>MHC class I molecules are expressed by most cell types, MHC class II molecules are expressed by few cell types</td>
</tr>
<tr>
<td>5-17</td>
<td>The T-cell receptor specifically recognizes both peptide and MHC molecule</td>
</tr>
</tbody>
</table>

| Summary | 133 |

<table>
<thead>
<tr>
<th>The major histocompatibility complex</th>
<th>135</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-18</td>
<td>The diversity of MHC molecules in the human population is due to multigene families and genetic polymorphism</td>
</tr>
<tr>
<td>5-19</td>
<td>The HLA class I and class II genes occupy different regions of the HLA complex</td>
</tr>
<tr>
<td>5-20</td>
<td>Other proteins involved in antigen processing and presentation are encoded in the HLA class II region</td>
</tr>
<tr>
<td>5-21</td>
<td>MHC polymorphism affects the binding of peptide antigens and their presentation to T cells</td>
</tr>
<tr>
<td>5-22</td>
<td>MHC diversity results from selection by infectious disease</td>
</tr>
<tr>
<td>5-23</td>
<td>MHC polymorphism triggers T-cell reactions that can reject transplanted organs</td>
</tr>
</tbody>
</table>

| Summary | 144 |

<table>
<thead>
<tr>
<th>The development of B cells in the bone marrow</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1</td>
<td>B-cell development in the bone marrow proceeds through several stages</td>
</tr>
<tr>
<td>6-2</td>
<td>B-cell development is stimulated by bone marrow stromal cells</td>
</tr>
<tr>
<td>6-3</td>
<td>Pro-B-cell rearrangement of the heavy-chain locus is an inefficient process</td>
</tr>
<tr>
<td>6-4</td>
<td>The pre-B-cell receptor monitors the quality of immunoglobulin heavy chains</td>
</tr>
<tr>
<td>6-5</td>
<td>The pre-B-cell receptor causes allelic exclusion at the immunoglobulin heavy-chain locus</td>
</tr>
<tr>
<td>6-6</td>
<td>Rearrangement of the light-chain loci by pre-B cells is relatively efficient</td>
</tr>
<tr>
<td>6-7</td>
<td>Developing B cells pass two checkpoints in the bone marrow</td>
</tr>
<tr>
<td>6-8</td>
<td>A program of protein expression underlies the stages of B-cell development</td>
</tr>
<tr>
<td>6-9</td>
<td>Many B-cell tumors carry chromosomal translocations that join immunoglobulin genes to genes that regulate cell growth</td>
</tr>
<tr>
<td>6-10</td>
<td>B cells expressing the glycoprotein CD5 express a distinctive repertoire of receptors</td>
</tr>
</tbody>
</table>

| Summary | 162 |

<table>
<thead>
<tr>
<th>Selection and further development of the B-cell repertoire</th>
<th>163</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-11</td>
<td>The population of immature B cells is purged of cells bearing self-reactive B-cell receptors</td>
</tr>
</tbody>
</table>
6-12 The antigen receptors of autoreactive immature B cells can be modified by receptor editing 165
6-13 Immature B cells specific for monovalent self antigens are made nonresponsive to antigen 166
6-14 Maturation and survival of B cells requires access to lymphoid follicles 167
6-15 Encounter with antigen leads to the differentiation of activated B cells into plasma cells and memory B cells 168
6-16 Different types of B-cell tumor reflect B cells at different stages of development 169

Summary 170
Summary to Chapter 6 172
Questions 173

Chapter 7
The Development of T Lymphocytes 177
7-1 T cells develop in the thymus 178
7-2 Thymocytes commit to the T-cell lineage before rearranging their T-cell receptor genes 180
7-3 The two lineages of T cells arise from a common thymocyte progenitor 181
7-4 Gene rearrangement in double-negative thymocytes leads to assembly of either a γ:δ receptor or a pre-T-cell receptor 183
7-5 Thymocytes can make four attempts to rearrange a β-chain gene 184
7-6 Rearrangement of the α-chain gene occurs only in pre-T cells 185
7-7 Stages in T-cell development are marked by changes in gene expression 186
Summary 188

Positive and negative selection of the T-cell repertoire 188
7-8 T cells that recognize self-MHC molecules are positively selected in the thymus 189
7-9 Continuing α-chain gene rearrangement increases the chance for positive selection 190
7-10 Positive selection determines expression of either the CD4 or the CD8 co-receptor 191
7-11 T cells specific for self antigens are removed in the thymus by negative selection 192
7-12 Tissue-specific proteins are expressed in the thymus and participate in negative selection 192
7-13 Regulatory CD4 T cells comprise a distinct lineage of CD4 T cells 193

7-14 T cells undergo further differentiation in secondary lymphoid tissues after encounter with antigen 193
Summary 194
Summary to Chapter 7 194
Questions 196

Chapter 8
T Cell-Mediated Immunity 199
Activation of naive T cells by antigen 199
8-1 Dendritic cells carry antigens from sites of infection to secondary lymphoid tissues 200
8-2 Dendritic cells are adept and versatile at processing pathogen antigens 202
8-3 Naive T cells first encounter antigen presented by dendritic cells in secondary lymphoid tissues 203
8-4 Homing of naive T cells to secondary lymphoid tissues is determined by chemokines and cell-adhesion molecules 204
Activation of naive T cells requires signals from the antigen receptor and a co-stimulatory receptor 206
Signals from T-cell receptors, co-receptors, and co-stimulatory receptors activate naive T cells 207
Proliferation and differentiation of activated naive T cells are driven by the cytokine interleukin-2 209
8-8 Antigen recognition in the absence of co-stimulation leads to a state of T-cell anergy 210
Activation of naive CD4 T cells gives rise to effector CD4 T cells with distinctive helper functions 211
The cytokine environment determines which differentiation pathway a naive T cell takes 213
8-11 Positive feedback in the cytokine environment can polarize the effector CD4 T-cell response 214
8-12 Naive CD8 T cells require stronger activation than naive CD4 T cells 215
Summary 217

The properties and functions of effector T cells 218
8-13 Cytotoxic CD8 T cells and effector CD4 T_{H1}, T_{H2}, and T_{H17} work at sites of infection 218
8-14 Effector T-cell functions are mediated by cytokines and cytotoxins 220
8-15 Cytokines change the patterns of gene expression in the cells targeted by effector T cells 221
10-6 Intestinal epithelial cells contribute to innate immune responses in the gut 275
10-7 Intestinal macrophages eliminate pathogens without creating a state of inflammation 276
10-8 M cells constantly transport microbes and antigens from the gut lumen to gut-associated lymphoid tissue 277
10-9 Gut dendritic cells respond differently to food, commensal microorganisms, and pathogens 278
10-10 Activation of B cells and T cells in one mucosal tissue commits them to defending all mucosal tissues 279
10-11 A variety of effector lymphocytes guard healthy mucosal tissue in the absence of infection 281
10-12 B cells activated in mucosal tissues give rise to plasma cells secreting IgM and IgA at mucosal surfaces 282
10-13 Secretory IgM and IgA protect mucosal surfaces from microbial invasion 283
10-14 Two subclasses of IgA have complementary properties for controlling microbial populations 285
10-15 People lacking IgA are able to survive, reproduce, and generally remain healthy 286
10-16 Th2-mediated immunity protects against helminth infections 288
Summary to Chapter 10 290
Questions 292

Chapter 11
Immunological Memory and Vaccination 295

11-1 Antibodies made in a primary immune response persist for several months and provide protection 296
11-2 Low levels of pathogen-specific antibodies are maintained by long-lived plasma cells 297
11-3 Long-lived clones of memory B cells and T cells are produced in the primary immune response 297
11-4 Memory B cells and T cells provide protection against pathogens for decades and even for life 299
11-5 Maintaining populations of memory cells does not depend upon the persistence of antigen 299
11-6 Changes to the antigen receptor distinguish naive, effector, and memory B cells 300
11-7 In the secondary immune response, memory B cells are activated whereas naive B cells are inhibited 300
11-8 Activation of the primary and secondary immune responses have common features 301
11-9 Combinations of cell-surface markers distinguish memory T cells from naive and effector T cells 302
11-10 Central and effector memory T cells recognize pathogens in different tissues of the body 304
11-11 In viral infections, numerous effector CD8 T cells give rise to relatively few memory T cells 305
11-12 Immune-complex-mediated inhibition of naive B cells is used to prevent hemolytic anemia of the newborn 305
11-13 In the response to influenza virus, immunological memory is gradually eroded 306
Summary 307

Vaccination to prevent infectious disease 308
11-14 Protection against smallpox is achieved by immunization with the less dangerous cowpox virus 308
11-15 Smallpox is the only infectious disease of humans that has been eradicated worldwide by vaccination 309
11-16 Most viral vaccines are made from killed or inactivated viruses 310
11-17 Both inactivated and live-attenuated vaccines protect against poliovirus 311
11-18 Vaccination can inadvertently cause disease 312
11-19 Subunit vaccines are made from the most antigenic components of a pathogen 313
11-20 Invention of rotavirus vaccines took at least 30 years of research and development 313
11-21 Bacterial vaccines are made from whole bacteria, secreted toxins, or capsular polysaccharides 314
11-22 Conjugate vaccines enable high-affinity antibodies to be made against carbohydrate antigens 315
11-23 Adjuvants are added to vaccines to activate and enhance the response to antigen 316
11-24 Genome sequences of human pathogens have opened up new avenues for making vaccines 316
11-25 The ever-changing influenza virus requires a new vaccine every year 318
11-26 The need for a vaccine and the demands placed upon it change with the prevalence of disease 319
11-27 Vaccines have yet to be made against pathogens that establish chronic infections 322
11-28 Vaccine development faces greater public scrutiny than drug development 323

Summary to Chapter 11 324

Questions 325

Chapter 12

Coevolution of Innate and Adaptive Immunity 329

Regulation of NK-cell function by MHC class I and related molecules 330
12-1 NK cells express a range of activating and inhibitory receptors 330
12-2 The strongest receptor that activates NK cells is an Fc receptor 332
12-3 Many NK-cell receptors recognize MHC class I and related molecules 333
12-4 Immunoglobulin-like NK-cell receptors recognize polymorphic epitopes of HLA-A, HLA-B, and HLA-C 335
12-5 NK cells are educated to detect pathological change in MHC class I expression 336
12-6 Different genomic complexes encode lectin-like and immunoglobulin-like NK-cell receptors 339
12-7 Human KIR haplotypes uniquely come in two distinctive forms 340
12-8 Cytomegalovirus infection induces proliferation of NK cells expressing the activating HLA-E receptor 341
12-9 Interactions of uterine NK cells with fetal MHC class I molecules affect reproductive success 342

Summary to Chapter 11 343

Questions 344

Chapter 13

Failures of the Body’s Defenses 365

Evasion and subversion of the immune system by pathogens 365
13-1 Genetic variation within some species of pathogens prevents effective long-term immunity 366
13-2 Mutation and recombination allow influenza virus to escape from immunity 366
13-3 Trypanosomes use gene conversion to change their surface antigens 368
13-4 Herpesviruses persist in human hosts by hiding from the immune response 369
13-5 Some pathogens sabotage or subvert immune defense mechanisms 371
13-6 Bacterial superantigens stimulate a massive but ineffective CD4 T-cell response 373
13-7 Subversion of IgA action by bacterial IgA-binding proteins 374

Summary to Chapter 13 375

Questions 376

Inherited Immunodeficiency Diseases 375

13-8 Rare primary immunodeficiency diseases reveal how the human immune system works 375
13-9 Inherited immunodeficiency diseases are caused by dominant, recessive, or X-linked gene defects 377
13-10 Recessive and dominant mutations in the IFN-γ receptor cause diseases of differing severity 378
13-11 Antibody deficiency leads to poor clearing of extracellular bacteria 379
13-12 Diminished production of antibodies also results from inherited defects in T-cell help

13-13 Complement defects impair antibody-mediated immunity and cause immune-complex disease

13-14 Defects in phagocytes result in enhanced susceptibility to bacterial infection

13-15 Defects in T-cell function result in severe combined immune deficiencies

13-16 Some inherited immunodeficiencies lead to specific disease susceptibilities

Summary

Acquired immune deficiency syndrome

13-17 HIV is a retrovirus that causes a slowly progressing chronic disease

13-18 HIV infects CD4 T cells, macrophages, and dendritic cells

13-19 In the twentieth century, most HIV-infected people progressed in time to get AIDS

13-20 Genetic deficiency of the CCR5 co-receptor for HIV confers resistance to infection

13-21 HLA and KIR polymorphisms influence the progression to AIDS

13-22 HIV escapes the immune response and develops resistance to antiviral drugs by rapid mutation

13-23 Clinical latency is a period of active infection and renewal of CD4 T cells

13-24 HIV infection leads to immunodeficiency and death from opportunistic infections

13-25 A minority of HIV-infected individuals make antibodies that neutralize many strains of HIV

Summary

Summary to Chapter 13

Questions

Chapter 14

IgE-Mediated Immunity and Allergy

14-1 Different effector mechanisms cause four distinctive types of hypersensitivity reaction

Shared mechanisms of immunity and allergy

14-2 IgE-mediated immune responses defend the body against multicellular parasites

14-3 IgE antibodies emerge at early and late times in the primary immune response

14-4 Allergy is prevalent in countries where parasite infections have been eliminated

14-5 IgE has distinctive properties that contrast with those of IgG

14-6 IgE and FcεRI supply each mast cell with a diversity of antigen-specific receptors

14-7 FcεRII is a low-affinity receptor for IgE Fc regions that regulates the production of IgE by B cells

14-8 Treatment of allergic disease with an IgE-specific monoclonal antibody

14-9 Mast cells defend and maintain the tissues in which they reside

14-10 Tissue mast cells orchestrate IgE-mediated reactions through the release of inflammatory mediators

14-11 Eosinophils are specialized granulocytes that release toxic mediators in IgE-mediated responses

14-12 Basophils are rare granulocytes that initiate T_{H2} responses and the production of IgE

Summary

IgE-mediated allergic disease

14-13 Allergens are protein antigens, some of which resemble parasite antigens

14-14 Predisposition to allergic disease is influenced by genetic and environmental factors

14-15 IgE-mediated allergic reactions consist of an immediate response followed by a late-phase response

14-16 The effects of IgE-mediated allergic reactions vary with the site of mast-cell activation

14-17 Systemic anaphylaxis is caused by allergens in the blood

14-18 Rhinitis and asthma are caused by inhaled allergens

14-19 Urticaria, angioedema, and eczema are allergic reactions in the skin

14-20 Food allergies cause systemic effects as well as gut reactions

14-21 Allergic reactions are prevented and treated by three complementary approaches

Summary

Summary to Chapter 14

Questions

Chapter 15

Transplantation of Tissues and Organs

Allogeneic transplantation can trigger hypersensitivity reactions
15-1 Blood is the most common transplanted tissue

15-2 Before blood transfusion, donors and recipients are matched for ABO and the Rhesus D antigens

15-3 Incompatibility of blood group antigens causes type II hypersensitivity reactions

15-4 Hyperacute rejection of transplanted organs is a type II hypersensitivity reaction

15-5 Anti-HLA antibodies can arise from pregnancy, blood transfusion, or previous transplants

15-6 Transplant rejection and graft-versus-host disease are type IV hypersensitivity reactions

Summary

Transplantation of solid organs

15-7 Organ transplantation involves procedures that inflame the donated organ and the transplant recipient

15-8 Acute rejection is a type IV hypersensitivity caused by effector T cells responding to HLA differences between donor and recipient

15-9 HLA differences between transplant donor and recipient activate numerous alloreactive T cells

15-10 Chronic rejection of organ transplants is caused by a type III hypersensitivity reaction

15-11 Matching donor and recipient HLA class I and II allotypes improves the success of transplantation

15-12 Immunosuppressive drugs make allogeneic transplantation possible as routine therapy

15-13 Some treatments induce immunosuppression before transplantation

15-14 T-cell activation can be targeted by immunosuppressive drugs

15-15 Alloreactive T-cell co-stimulation can be blocked with a soluble form of CTLA4

15-16 Blocking cytokine signaling can prevent alloreactive T-cell activation

15-17 Cytotoxic drugs target the replication and proliferation of alloantigen-activated T cells

15-18 Patients needing a transplant outnumber the available organs

15-19 The need for HLA matching and immunosuppressive therapy varies with the organ transplanted

Summary

Hematopoietic cell transplantation

15-20 Hematopoietic cell transplantation is a treatment for genetic diseases of blood cells

15-21 Allogeneic hematopoietic cell transplantation is the preferred treatment for many cancers

15-22 After hematopoietic cell transplantation, the patient is attacked by alloreactive T cells in the graft

15-23 HLA matching of donor and recipient is most important for hematopoietic cell transplantation

15-24 Minor histocompatibility antigens trigger alloreactive T cells in recipients of HLA-identical transplants

15-25 Some GVHD helps engraftment and prevents relapse of malignant disease

15-26 NK cells also mediate graft-versus-leukemia effects

15-27 Hematopoietic cell transplantation can induce tolerance of a solid organ transplant

Summary

Summary to Chapter 15

Questions

Chapter 16

Disruption of Healthy Tissue by the Adaptive Immune Response

16-1 Every autoimmune disease resembles a type II, III, or IV hypersensitivity reaction

16-2 Autoimmune diseases arise when tolerance to self antigens is lost

16-3 HLA is the dominant genetic factor affecting susceptibility to autoimmune disease

16-4 HLA associations reflect the importance of T-cell tolerance in preventing autoimmunity

16-5 Binding of antibodies to cell-surface receptors causes several autoimmune diseases

16-6 Organized lymphoid tissue sometimes forms at sites inflamed by autoimmune disease

16-7 The antibody response to an autoantigen can broaden and strengthen by epitope spreading

16-8 Intermolecular epitope spreading occurs in systemic autoimmune disease

16-9 Intravenous immunoglobulin is a therapy for autoimmune diseases
16-10 Monoclonal antibodies that target TNF-α and B cells are used to treat rheumatoid arthritis

16-11 Rheumatoid arthritis is influenced by genetic and environmental factors

16-12 Autoimmune disease can be an adverse side-effect of an immune response to infection

16-13 Noninfectious environmental factors affect the development of autoimmune disease

16-14 Type 1 diabetes is caused by the selective destruction of insulin-producing cells in the pancreas

16-15 Combinations of HLA class II allotypes confer susceptibility and resistance to type 1 diabetes

16-16 Celiac disease is a hypersensitivity to food that has much in common with autoimmune disease

16-17 Celiac disease is caused by the selective destruction of intestinal epithelial cells

16-18 Senescence of the thymus and the T-cell population contributes to autoimmunity

16-19 Autoinflammatory diseases of innate immunity

Summary to Chapter 16

Questions

Chapter 17

Cancer and Its Interactions With the Immune System

17-1 Cancer results from mutations that cause uncontrolled cell growth

17-2 A cancer arises from a single cell that has accumulated multiple mutations

17-3 Exposure to chemicals, radiation, and viruses facilitates progression to cancer

17-4 Certain common features distinguish cancer cells from normal cells

17-5 Immune responses to cancer have similarities with those to virus-infected cells

17-6 Allogeneic differences in MHC class I molecules enable cytotoxic T cells to eliminate tumor cells

17-7 Mutations acquired by somatic cells during oncogenesis can give rise to tumor-specific antigens

17-8 Cancer/testis antigens are a prominent type of tumor-associated antigen

17-9 Successful tumors evade and manipulate the immune response

17-10 Vaccination against human papillomaviruses can prevent cervical and other genital cancers

17-11 Vaccination with tumor antigens can cause cancer to regress but it is unpredictable

17-12 Monoclonal antibodies that interfere with negative regulators of the immune response can be used to treat cancer

17-13 T-cell responses to tumor cells can be improved with chimeric antigen receptors

17-14 The antitumor response of γ:δ T cells and NK cells can be augmented

17-15 T-cell responses to tumors can be improved by adoptive transfer of antigen-activated dendritic cells

17-16 Monoclonal antibodies are valuable tools for the diagnosis of cancer

17-17 Monoclonal antibodies against cell-surface antigens are increasingly used in cancer therapy

Summary to Chapter 17

Questions