the biology of
CANCER
SECOND EDITION
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>The Biology and Genetics of Cells and Organisms</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>The Nature of Cancer</td>
<td>31</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Tumor Viruses</td>
<td>71</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Cellular Oncogenes</td>
<td>103</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Growth Factors, Receptors, and Cancer</td>
<td>131</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Cytoplasmic Signaling Circuitry Programs Many of the Traits of Cancer</td>
<td>175</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Tumor Suppressor Genes</td>
<td>231</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>pRb and Control of the Cell Cycle Clock</td>
<td>275</td>
</tr>
<tr>
<td>Chapter 9</td>
<td>p53 and Apoptosis: Master Guardian and Executioner</td>
<td>331</td>
</tr>
<tr>
<td>Chapter 10</td>
<td>Eternal Life: Cell Immortalization and Tumorigenesis</td>
<td>391</td>
</tr>
<tr>
<td>Chapter 11</td>
<td>Multi-Step Tumorigenesis</td>
<td>439</td>
</tr>
<tr>
<td>Chapter 12</td>
<td>Maintenance of Genomic Integrity and the Development of Cancer</td>
<td>511</td>
</tr>
<tr>
<td>Chapter 13</td>
<td>Dialogue Replaces Monologue: Heterotypic Interactions and the Biology of Angiogenesis</td>
<td>577</td>
</tr>
<tr>
<td>Chapter 14</td>
<td>Moving Out: Invasion and Metastasis</td>
<td>641</td>
</tr>
<tr>
<td>Chapter 15</td>
<td>Crowd Control: Tumor Immunology and Immunotherapy</td>
<td>723</td>
</tr>
<tr>
<td>Chapter 16</td>
<td>The Rational Treatment of Cancer</td>
<td>797</td>
</tr>
</tbody>
</table>

Abbreviations

A:1

Glossary

G:1

Index

I:1
List of Key Techniques

Apoptotic cells: Various detection techniques (Figure 9.19)
Apoptotic cells: Detection by the TUNEL assay (Supplementary Sidebar 9.2)
Chromatin immunoprecipitation (Supplementary Sidebar 8.3)
Circulating tumor cells: Detection using microfluidic devices (Supplementary Sidebar 14.3)
Comparative genomic hybridization (CGH) (Supplementary Sidebar 11.4)
DNA sequence polymorphisms: Detection by polymerase chain reaction (Supplementary Sidebar 7.3)
Embryonic stem cells: Derivation of pluripotent mouse cell lines (Supplementary Sidebar 8.1)
Fluorescence-activated cell sorting (FACS) (Supplementary Sidebar 11.1)
Gene cloning strategies (Supplementary Sidebar 1.5)
Gene cloning: Isolation of genes encoding melanoma antigens (Supplementary Sidebar 15.11)
Gene cloning: Isolation of transfected human oncogenes (Figure 4.7)
Gene knock-in and knock-out: Homologous recombination with mouse germ-line genes (Supplementary Sidebar 7.7)
Histopathological staining techniques (Supplementary Sidebar 2.1)
Knocking down gene expression with shRNAs and siRNAs (Supplementary Sidebar 1.4)
Laser-capture microdissection (Supplementary Sidebar 13.5)
Mapping of DNA methylation sites: Use of sequence-specific polymerase chain reaction (Supplementary Sidebar 7.4)
Mapping of an oncogene-activating mutation (Figure 4.8)
Mapping of tumor suppressor genes via restriction fragment length polymorphisms (Figure 7.13)
Monoclonal antibodies (Supplementary Sidebar 11.1)
Mutagenicity measurement: The Ames test (Figure 2.27)
Probe construction: The src-specific DNA probe (Figure 3.20)
Reproductive cloning (Supplementary Sidebar 1.2)
Retroviral vector construction (Supplementary Sidebar 3.3)
Screening for mutant oncoproteins (Figure 16.25)
Skin carcinoma induction in mice (Figure 11.30)
Southern and Northern blotting (Supplementary Sidebar 4.3)
Telomerase activity measurements: The TRAP assay (Supplementary Sidebar 10.1)
Transfection of DNA (Figure 4.1)
Transgenic mice: Creating tumor-prone strains (Figure 9.23A)

Can be found on the DVD-ROM accompanying the book.
7.1 Cell fusion experiments indicate that the cancer phenotype is recessive 259
7.2 Von Hippel–Lindau disease: pVHL modulates the hypoxic response 265
7.3 Synopsis and prospects 268
Key concepts 272
Thought questions 273
Additional reading 273

Chapter 8: pRb and Control of the Cell Cycle Clock 275
8.1 Cell growth and division is coordinated by a complex array of regulators 276
8.2 Cells make decisions about growth and quiescence during a specific period in the G1 phase 281
8.3 Cyclins and cyclin-dependent kinases constitute the core components of the cell cycle clock 283
8.4 Cyclin–CDK complexes are also regulated by CDK inhibitors 288
8.5 Viral oncoproteins reveal how pRb blocks advance through the cell cycle 294
8.6 pRb is deployed by the cell cycle clock to serve as a guardian of the restriction-point gate 298
8.7 E2F transcription factors enable pRb to implement growth–versus-quiescence decisions 299
8.8 A variety of mitogenic signaling pathways control the phosphorylation state of pRb 304
8.9 The Myc protein governs decisions to proliferate or differentiate 306
8.10 TGF-β prevents phosphorylation of pRb and thereby blocks cell cycle progression 311
8.11 pRb function and the controls of differentiation are closely linked 314
8.12 Control of pRb function is perturbed in most if not all human cancers 318
8.13 Synopsis and prospects 323
Key concepts 327
Thought questions 328
Additional reading 329

Chapter 9: p53 and Apoptosis: Master Guardian and Executioner 331
9.1 Papovaviruses lead to the discovery of p53 332
9.2 p53 is discovered to be a tumor suppressor gene 334
9.3 Mutant versions of p53 interfere with normal p53 function 335
9.4 p53 protein molecules usually have short lifetimes 338
9.5 A variety of signals cause p53 induction 339
9.6 DNA damage and deregulated growth signals cause p53 stabilization 341
9.7 Mdm2 destroys its own creator 342
9.8 ARF and p53-mediated apoptosis protect against cancer by monitoring intracellular signaling 348
9.9 p53 functions as a transcription factor that halts cell cycle advance in response to DNA damage and attempts to aid in the repair process 352
9.10 p53 often ushers in the apoptotic death program 355
9.11 p53 inactivation provides advantage to incipient cancer cells at a number of steps in tumor progression 359
9.12 Inherited mutant alleles affecting the p53 pathway predispose one to a variety of tumors 360
9.13 Apoptosis is a complex program that often depends on mitochondria 361
9.14 Both intrinsic and extrinsic apoptotic programs can lead to cell death 371
9.15 Cancer cells invent numerous ways to inactivate some or all of the apoptotic machinery 376
9.16 Necrosis and autophagy: two additional forks in the road of tumor progression 379
11.1 Most human cancers develop over many decades of time.

11.2 Histopathology provides evidence of multi-step tumor formation.

11.3 Cells accumulate genetic and epigenetic alterations as tumor progression proceeds.

11.4 Multi-step tumor progression helps to explain familial polyposis and field cancerization.

11.5 Cancer development seems to follow the rules of Darwinian evolution.

11.6 Tumor stem cells further complicate the Darwinian model of clonal succession and tumor progression.

11.7 A linear path of clonal succession oversimplifies the reality of cancer: intra-tumor heterogeneity.

11.8 The Darwinian model of tumor development is difficult to validate experimentally.

11.9 Multiple lines of evidence reveal that normal cells are resistant to transformation by a single mutated gene.

11.10 Transformation usually requires collaboration between two or more mutant genes.

11.11 Transgenic mice provide models of oncogene collaboration and multi-step cell transformation.

11.12 Human cells are constructed to be highly resistant to immortalization and transformation.

11.13 Nonmutagenic agents, including those favoring cell proliferation, make important contributions to tumorigenesis.

11.14 Toxic and mitogenic agents can act as human tumor promoters.

11.15 Chronic inflammation often serves to promote tumor progression in mice and humans.

11.16 Inflammation-dependent tumor promotion operates through defined signaling pathways.

11.17 Tumor promotion is likely to be a critical determinant of the rate of tumor progression in many human tissues.

11.18 Synopsis and prospects

Chapter 12: Maintenance of Genomic Integrity and the Development of Cancer

12.1 Tissues are organized to minimize the progressive accumulation of mutations.

12.2 Stem cells may or may not be targets of the mutagenesis that leads to cancer.

12.3 Apoptosis, drug pumps, and DNA replication mechanisms offer tissues a way to minimize the accumulation of mutant stem cells.

12.4 Cell genomes are threatened by errors made during DNA replication.

12.5 Cell genomes are under constant attack from endogenous biochemical processes.

12.6 Cell genomes are under occasional attack from exogenous mutagens and their metabolites.

12.7 Cells deploy a variety of defenses to protect DNA molecules from attack by mutagens.

12.8 Repair enzymes fix DNA that has been altered by mutagens.

12.9 Inherited defects in nucleotide-excision repair, base-excision repair, and mismatch repair lead to specific cancer susceptibility syndromes.

12.10 A variety of other DNA repair defects confer increased cancer susceptibility through poorly understood mechanisms.

12.11 The karyotype of cancer cells is often changed through alterations in chromosome structure.

12.12 The karyotype of cancer cells is often changed through alterations in chromosome number.

12.13 Synopsis and prospects

Chapter 13 Dialogue Replaces Monologue: Heterotypic Interactions and the Biology of Angiogenesis

13.1 Normal and neoplastic epithelial tissues are formed from interdependent cell types.

13.2 The cells forming cancer cell lines develop without heterotypic interactions and deviate from the behavior of cells within human tumors.

13.3 Tumors resemble wounded tissues that do not heal.

13.4 Experiments directly demonstrate that stromal cells are active contributors to tumorigenesis.

13.5 Macrophages and myeloid cells play important roles in activating the tumor-associated stroma.

13.6 Endothelial cells and the vessels that they form ensure tumors adequate access to the circulation.

13.7 Tripping the angiogenic switch is essential for tumor expansion.

13.8 The angiogenic switch initiates a highly complex process.

13.9 Angiogenesis is normally suppressed by physiologic inhibitors.

13.10 Anti-angiogenesis therapies can be employed to treat cancer.
15.1 The immune system functions to destroy foreign invaders and abnormal cells in the body's tissues.

15.2 The adaptive immune response leads to antibody production.

15.3 Another adaptive immune response leads to the formation of cytotoxic cells.

15.4 The innate immune response does not require prior sensitization.

15.5 The need to distinguish self from non-self results in immune tolerance.

15.6 Regulatory T cells are able to suppress major components of the adaptive immune response.

15.7 The immunosurveillance theory is born and then suffers major setbacks.

15.8 Use of genetically altered mice leads to a resurrection of the immunosurveillance theory.

15.9 The human immune system plays a critical role in warding off various types of human cancer.

15.10 Subtle differences between normal and neoplastic tissues may allow the immune system to distinguish between them.

15.11 Tumor transplantation antigens often prove potent immune responses.

15.12 Tumor-associated transplantation antigens may also evoke anti-tumor immunity.

15.13 Cancer cells can evade immune detection by suppressing cell-surface display of tumor antigens.

15.14 Cancer cells protect themselves from destruction by NK cells and macrophages.

15.15 Tumor cells launch counterattacks on immunocytes.

15.16 Cancer cells become intrinsically resistant to various forms of killing used by the immune system.

15.17 Cancer cells attract regulatory T cells to fend off attacks by other lymphocytes.

15.18 Passive immunization with monoclonal antibodies can be used to kill breast cancer cells.

15.19 Passive immunization with antibody can also be used to treat B-cell tumors.

15.20 Transfer of foreign immunocytes can lead to cures of certain hematopoietic malignancies.

15.21 Patients' immune systems can be mobilized to attack their tumors.

15.22 Synopsis and prospects.

16.1 The development and clinical use of effective therapies will depend on accurate diagnosis of disease.

16.2 Surgery, radiotherapy, and chemotherapy are the major pillars on which current cancer therapies rest.

16.3 Differentiation, apoptosis, and cell cycle checkpoints can be exploited to kill cancer cells.

16.4 Functional considerations dictate that only a subset of the defective proteins in cancer cells are attractive targets for drug development.

16.5 The biochemistry of proteins also determines whether they are attractive targets for intervention.

16.6 Pharmaceutical chemists can generate and explore the biochemical properties of a wide array of potential drugs.

16.7 Drug candidates must be tested on cell models as an initial measurement of their utility in whole organisms.

16.8 Studies of a drug's action in laboratory animals are an essential part of pre-clinical testing.

16.9 Promising candidate drugs are subjected to rigorous clinical tests in Phase I trials in humans.

16.10 Phase II and III trials provide credible indications of clinical efficacy.

16.11 Tumors often develop resistance to initially effective therapy.

16.12 Gleevec paved the way for the development of many other highly targeted compounds.

16.13 EGFR receptor antagonists may be useful for treating a wide variety of tumor types.

16.14 Proteasome inhibitors yield unexpected therapeutic benefit.

16.15 A sheep teratogen may be useful as a highly potent anti-cancer drug.

16.16 mTOR, a master regulator of cell physiology, represents an attractive target for anti-cancer therapy.

16.17 B-Raf discoveries have led to inroads into the melanoma problem.

16.18 Synopsis and prospects: challenges and opportunities on the road ahead.